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Abstract—In this paper, we consider a communication scenario
in which the primary and the cognitive radios wish to communi-
cate to different receivers, subject to mutual interference. In the
model that we use, the cognitive radio has noncausal knowledge
of the primary radio’s codeword. We characterize the largest rate
at which the cognitive radio can reliably communicate under the
constraint that 1) no rate degradation is created for the primary
user, and 2) the primary receiver uses a single-user decoder just as
it would in the absence of the cognitive radio. The result holds in
a “low-interference” regime in which the cognitive radio is closer
to its receiver than to the primary receiver. In this regime, our re-
sults are subsumed by the results derived in a concurrent and in-
dependent work (Wu et al., 2007). We also demonstrate that, in a
“high-interference” regime, multiuser decoding at the primary re-
ceiver is optimal from the standpoint of maximal jointly achievable
rates for the primary and cognitive users.

Index Terms—Cognitive radio, Costa precoding, dirty-paper
coding, interference channel, spectral reuse, wireless networks.

I. INTRODUCTION

BSERVING a severe under-utilization of the licensed
O spectrum, the Federal Communications Commission
(FCC) has recently recommended [7], [8] that significantly
greater spectral efficiency could be realized by deploying
wireless devices that can coexist with the incumbent li-
censed (primary) users, generating minimal interference while
somehow taking advantage of the available resources. Such
devices could, for instance, form real-time secondary markets
[16] for the licensed spectrum holders of a cellular network or
even, potentially, allow a complete secondary system to simul-
taneously operate in the same frequency band as the primary.
The characteristic feature of these cognitive radios would be
their ability to recognize their communication environment
and adapt the parameters of their communication scheme to
maximize the quality of service for the secondary users while
minimizing the interference to the primary users.
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Fig. 1. A possible arrangement of the primary and secondary receivers, base
stations B,, and B, respectively. The cognitive secondary user is represented
by the circle and the primary user is represented by the square. The side-infor-
mation path is depicted by the dotted line.

In this paper, we study the fundamental limits of performance
of wireless networks endowed with cognitive radios. In partic-
ular, in order to understand the ultimate system-wide benefits of
the cognitive nature of such devices, we assume that the cog-
nitive radio has noncausal knowledge of the codeword of the
primary user in its vicinity!; in this, we are motivated by the
model proposed in [6]. We address the following fundamental
question:

What is the largest rate that the cognitive radio can
achieve under the constraint that
1) it creates no rate degradation for the primary user in
its vicinity, and
2) the primary receiver uses a single-user decoder, just
as it would in the absence of the cognitive radio?

We will refer to these two imperative constraints as the coexis-
tence conditions that a cognitive secondary system must satisfy.

Of central interest to us is the communication scenario il-
lustrated in Fig. 1. The primary user wishes to communicate
to the primary base station B,,. In its vicinity is a secondary
user equipped with a cognitive radio that wishes to transmit to
the secondary base station Bs. We assume that the cognitive
radio has obtained the message of the primary user. The received
signal-to-noise ratio of the cognitive radio’s transmission at the
secondary base station is denoted by SNR. The transmission of
the cognitive radio is also received at I3}, and the SNR of this in-
terfering signal is denoted by INR (interference-to-noise ratio).

Note that this does not imply that the cognitive user can decode the informa-
tion that the primary user is communicating since there are secure encryption
protocols running at the application layer. The decoded codeword is a meaning-
less stream of bits for the cognitive user.
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Fig. 2. The (Gaussian) cognitive radio channel after n channel uses. The
dashed lines represent interfering receptions. The dotted line represents the
side-information path. The power constraints are I, and P, and noise variances
are NV, and N,.

If the cognitive user is close to B, INR could potentially be
large.

We identify the largest rate at which the cognitive radio can
reliably communicate with its receiver B, under the coexistence
conditions and in the “low-interference-gain” regime in which
INR < SNR. This regime is of practical interest since it models
the realistic scenario in which the cognitive radio is closer to
B, than to B,,. Moreover, we show that the capacity achieving
strategy is for the cognitive radio to perform precoding for the
primary users’s codeword and transmit over the same time-fre-
quency slot as that used by the primary radio.

To prove this result, we allow the primary and secondary sys-
tems to cooperate and jointly design their encoder/decoder pairs
and then show that the optimal communication scheme for this
cooperative situation has the property that the primary decoder
does not depend on the encoder and decoder used by the sec-
ondary system. Under such a joint encoder/decoder design, the
cognitive radio channel can be thought of as the classical inter-
ference channel [1], [18], [4] but with degraded message sets2:
Achievable schemes for this channel have been first studied in
[6]. The capacity region of this channel, in the low-interfer-
ence-gain regime, has recently been found by an independent
and concurrent work [23], [24]. In this paper, we provide an al-
ternative proof for a portion of the capacity region of the same
channel. The capacity region under the assumption that both re-
ceivers experience high interference has been reported in [13].
A related problem of communicating a single private message
along with a common message to each of the receivers has been
studied in [14].

In contrast to our results for the low-interference-gain regime,
we exhibit a regime in which joint code design is beneficial with
respect to the largest set of simultaneously achievable rates of
the two radios. We find that, when INR > SNR, multiuser de-
coding by the primary receiver is required in order to achieve all
the rates in the capacity region of the interference channel with
degraded message sets.

The rest of this paper is organized as follows. We first intro-
duce the Gaussian cognitive radio channel in Section II. The
capacity of the cognitive radio channel in the low-interference-
gain regime, where INR < SNR, is presented in Section III. The

2The primary radio has only a subset of the messages available to the cognitive
radio.
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proof is given in Section III, where we demonstrate a part of the
capacity region of the underlying interference channel with de-
graded message sets which inherently allows for joint code de-
sign. This result, along with that of the parallel work by [24],
yields the capacity of the Gaussian cognitive radio channel. We
then show that the benefit of joint code design becomes apparent
in the high-interference-gain regime INR > SNR; this is done
in Section I'V-B. Finally, we study the system-level implications
of the optimal cognitive communication scheme in Section V.

II. THE CHANNEL MODEL AND PROBLEM STATEMENT

A. The Cognitive Radio Channel

Consider the following communication scenario which we
will refer to as the cognitive radio channel.

The additive noise at the primary and secondary
receivers, Z;‘ = (ZpisZposeoos Zpn) and 20 =
(Zs1,Zs2,---,25y), is assumed to be independent identi-
cally distributed (i.i.d.) across symbol times 7 = 1,2,...n and
distributed according to NV (0, N,,) and N'(0, N, ), respectively.3
The correlation between Z » and Z o is irrelevant from the stand-
point of probability of error or capacity calculations since the
base stations are not allowed to pool their signals. The primary
user has message m,, € {0,1,...,2"%} intended for the pri-
mary receiver to decode, the cognitive user has message m. €
{0,1,...,2"f<}) intended for the secondary receiver as well as
the message m,, of the primary user. The average power of the
transmitted signals is constrained by 131, and P,, respectively
2 ~

< nP.. ey

~ 2 ~ ~
ol <ot [

The received signal-to-noise ratios (SNRs) of the desired sig-
nals at the primary and secondary base station are p21~’p /N, and
02130/NS, respectively. The received SNRs of the interfering
signals at the primary and secondary base station (INRs) are
f?P./N, and g*P,/N,, respectively. The constants (p, c, f, g)
are assumed to be real, positive, and globally known. The results
of this paper easily extend to the case of complex coefficients
(see Section V-C). The channel can be described by the pair of
per-time-sample equations

Y, =pX, + fX.+ 7, (2)
Ys = gXp + CXC + Zs 3)

where Z, is N'(0, N,,) and Z, is N'(0, N,).

B. Transformation to Standard Form

We can convert every cognitive radio channel with gains
(p, f,g,c), power constraints (PP,PC), and noise powers
(Np, Ns) to a corresponding standard form cognitive radio
channel with gains (1, a,b, 1), power constraints (P,, P.) and
noise powers (1, 1), expressed by the pair of equations

Y, = X, +aX. + 7, (4)
Y, = bX, + X, + Zs )

3Throughout this paper, we will denote vectors in R™ by X" :=
(X, Xoy oo, X))
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Fig. 3. The cognitive radio channel in standard form. The channel gains
(p, f» g, c) in the original channel are mapped to (1, a, b, 1), powers (P, P.)
are mapped to (P,, P.), and noise variances (N, IV, ) are mapped to (1,1).

where
a = VN b.= @
c\/ﬁp P\/N_s
_ p?P, 2P,

= P. .= .
N, , . (6)

g

The capacity of this cognitive radio channel is the same as that
of the original channel since the two channels are related by
invertible transformations# that are given by

pX, fp Zp
PN, PN, TP /N, )
X, Y, Z.

We will consider this standard form of the cognitive radio
channel without loss of generality and we will refer to it as the
(1,a,b,1) cognitive radio channel.

C. Coding on the Cognitive Radio Channel

Let the channel input alphabets of the primary and cognitive
radios be A}, = R and X. = R, respectively. Similarly, let the
channel output alphabets at the primary and secondary receivers
be V, = Rand Y, = R, respectively.

The primary receiver is assumed to use a single-user de-
coder, D, : Y, {1,2,...,2"%}, to decode my from
Y,". We define a single-user decoder to be any decoder which
performs well on the point-to-point additive white Gaussian
noise (AWGN) channel. For concreteness, we set the primary
decoder to be the nearest-neighbor (or minimum-distance)
decoder. Hence, we have the following definition.

Definition 2.1 (Achievability: Primary User): A rate R, is
achievable for the primary user if there exists a sequence of
encoders £ : {1,2,...,2"%} A} such that the average
probability of error® vanishes as n — oo, i.e.,

onRp

n) e 1 n n . .
P S 2P (DR () £ilmy =i) =0 ©)
i=1

when the primary receiver uses a single-user decoder D

4These transformations were used in [1], [3], and [18], in the context of the
classical interference channel.

SThe tuple (111, m. ) is assumed to be drawn from a uniform product measure
on{l,2,...,2"8r} x {1,2,... 278},
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The salient feature of the cognitive radio is that it has knowl-
edge of the primary encoder as well as the message m,,. Let &'
denote the set of all primary encoders. Hence, we have the fol-
lowing definition.

Definition 2.2 (Cognitive Radio Code): A (2" n) cogni-
tive radio code is a choice of an encoding rule (whose output
we denote by X)

n ., on nR, nR. n
Er:er x{1,2,...,2" "} x {1,2,...,2" R} = X" (10)

such that || X”||* < nP., and a choice of a decoding rule

DrYr - {1,2,..., 2" ], (11)

The following key definition formalizes the important notion
of coexistence conditions that the cognitive secondary system
must satisfy.

Definition 2.3 (Achievability: Cognitive User): A rate R, is
said to be achievable for the cognitive user on a (1, a, b, 1) cog-
nitive radio channel if there exists a sequence of (2"%< n) cog-
nitive radio codes such that the following two constraints are
satisfied:

1) the average probability of error vanishes as n — o0, i.e.,

n

— 0; (12)

2) arate of Ry ef % log(1+ P, ) is achievable for the primary
user, in the sense of Definition 2.1.

‘We note that the above definition is well defined, since the
rate R. = 0 is achievable for the cognitive user if the cognitive
radio simply shuts off.

Definition 2.4 (Capacity): The capacity of the cognitive radio
channel is defined to be the largest achievable rate R. for the
cognitive user.

III. THE CAPACITY OF THE COGNITIVE RADIO CHANNEL

If the received SNR of the cognitive radio transmission is
lesser at the primary receiver than at the secondary receiver, we
say that the primary system is affected by a low-interference
gain. This is the case that is most likely to occur in practice
since the cognitive radio is typically closer to its intended re-
ceiver (the secondary base station) than to the primary base sta-
tion. In terms of the parameters of our problem, this situation
corresponds to f1/N, < c\/ﬁp in our original cognitive radio
channel, or, equivalently, to ¢ < 1 in the corresponding stan-
dard-form (1, a,b, 1) cognitive radio channel. The capacity of
the cognitive radio channel in this regime is given by the fol-
lowing expression.

Theorem 3.1: The capacity of the (1, a,b, 1) cognitive radio

channel is

Rt = %log(l +(1=a")P.) (13)
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as long as a < 1. The constant o™ € [0, 1] is given by

VE (VT @R+ 1) 1)
av/P(1+ P)

(14)

Note that Theorem 3.1 holds for any b € R (or, equivalently,
any p, g € R in the original cognitive radio channel).

A. Proof of the Forward Part

To show the existence of a capacity-achieving cognitive
(2"E: n) code, we generate a sequence of random codes
such that the average probability of error (averaged over the
ensemble of codes and messages) vanishes as n — oo. In
particular, we have the following encoders and decoders.

* E7 ensemble: Given m,, € {1,2,...,2"f»}, generate the
codeword X} € R™ by drawing its coordinates i.i.d. ac-
cording to N (0, P,).

* L7 ensemble: Since the cognitive radio knows m,, as well
as £, it can form X' and perform superposition coding

as follows:
N aP,
Xt =X" —<Xn 15
R (15)

where @ € [0,1]. The codeword X encodes
m. € {1,2,...,2"%} and is generated by performing
Costa precoding [3] (also known as dirty-paper coding)
treating (b + 1/a£—;)X » as noncausally known interfer-
ence that will affect the secondary receiver in the presence
of A/(0,1) noise. The encoding is done by random bin-
ning [3].

* Dj: Single-user decoder that is optimal for the point-to-
point AWGN channel, such as the nearest-neighbor de-
coder.

e D7: Costa decoder (having knowledge of the binning en-
coder E7) [3].

The key result of Costa [4] is that, using the dirty-paper
coding technique, the maximum achievable rate is the same as
if the interference was also known at the receiver, i.e., as if it
were absent altogether. The characteristic feature of this scheme
is that the resulting codeword X 2 is statistically independent
of X' and is i.i.d. Gaussian. To satisfy the average power con-
straint of P. on the components of X', each coordinate of X a2
must, in fact, be A'(0, (1 — ) P.). Hence, the primary receiver
can treat X & as independent Gaussian noise. Using standard
methodology, it can be shown that the average probability of
error for decoding m,, (averaged over the code ensembles and
messages) vanishes, as n — oo, for all rates R,, below

%log <1+ (\/EJFG‘/O‘—P“)Z) .

1+ a?(1—a)P.

(16)

Similarly, the average probability of error in decoding m,. van-
ishes for all rates . below

élog(l +(1—-a)P). (17)
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However, in order to ensure that a given rate is achievable for
the cognitive user in the sense of Definition 2.3, we must have
that

1 VP +avaP)?\ 1
—log 1—1—( » +aval) = —log(l+ P,) =: R},.
2 1+a?(1—a)P. 2 P

(13)

Observe that, if a = 0, any choice of o € [0, 1] will satisfy
(18): in this case, we should set «* = 0 to maximize the rate
achievable for the cognitive user. For a > 0, by the intermediate
value theorem, this quadratic equation in v always has a unique
root in [0, 1], and it is given by (14).

Finally, since the code-ensemble-averaged (and message-av-
eraged) probabilities of error vanish, there must exist a partic-
ular sequence of cognitive radio codes and primary encoders
for which the (message-averaged) probabilities of error vanish
as well. Hence, R} = §log(1 + (1 — ) P.) is achievable for
the cognitive user in the sense of Definition 2.3.

B. Proof of the Converse Part

1) Proof Outline: We will first relax the constraints of
our problem and allow for joint primary and cognitive radio
code design thus forming an interference channel with de-
graded message sets,® which we will abbreviate as IC-DMS
for convenience. Since this relaxation enlarges the space of
allowable encoder/decoder pairs, the largest set of achievable
rate pairs (R, R.) in the IC-DMS must include the rate point
corresponding to the capacity of the cognitive radio channel,
ie., (3log(l + P,), R}), whatever R} might be.

Our approach is to first characterize the capacity region of the
IC-DMS, i.e., the largest set of rate tuples (R, R.) at which
joint reliable communication can take place. We are able to do
this only for a part of the capacity region’ and we refer the
reader to a concurrent and independent work [24] which pro-
vides a proof for the entire capacity region. Next we make the
key observation that the joint coding scheme that achieves all
the rate tuples in the capacity region of the IC-DMS has the
property that the decoder at the primary receiver is a standard
single-user decoder. Furthermore, we show that largest value of
R. such that the point (R,, R.) = (3log(1 + P,), R.) is on
the boundary of the capacity region of the IC-DMS is given by
R} = L log(1 4 (1 — a*)P.) with o* as in (14). We then con-
clude that R, = R} is the capacity of the corresponding cogni-
tive radio channel.

2) Joint Code Design: The IC-DMS: The input—output equa-
tions of the IC-DMS, as for the cognitive radio channel, are
given by (2) and (3) with the standard form given by (4) and (5).
We will denote the IC-DMS in standard form by “(1, a, b, 1)-IC-
DMS.”

Definition 3.1 (IC-DMS Code): A (2"F» 2"E: n) code for
the (1, a, b, 1)-IC-DMS is a joint selection of the encoding rules

6The primary user knows m, while the cognitive user knows {m,,m.},
hence the primary user has a subset of the messages available to the cognitive
user.

"The original version of this paper had an error in the proof of the converse
for the complementary portion of the capacity region.
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and the decoding rules: the encoding rules are two maps (whose
outputs we denote by X' and X", respectively), denoted as

er:{1,2,... 2"} - x»
J2nfey s 1,2, 20y o xn

19)

e {1,2,... (20)

such that || X7||> < nP, and [|X?||* < nP.. The decoding
rules are two maps denoted as

ey = (1,2,
Ve — L2,

2an }
kel

2n
(22)

Given that the messages selected are (m, = i,m. = j), an
error occurs if dyy(Y,') # i or di (Y") # J.

Observe that, unlike in the original cognitive radio channel,
here we allow for an arbitrary choice of the primary decoder
and, in particular, for the possibility of multiuser decoding, an
example of which is successive interference decoding and can-
cellation.

Definition 3.2 (Achievability: IC-DMS): A rate vector
(Rp, R.) is said to be achievable if there exists a sequence of
(2"F» 2nBe p) codes such that the average probability of error
at each of the receivers vanishes as n — 00, i.e.,

n

=~ () def 1 .
Pe(_,p) = -2n(RC+Rp) Z P(dp(Yp ) #

ilmy =i, me = j)

i=1,j=1
=0 (23)
n) def 1 n/on
Pe((’)_Qn(R—i-R) Z Pd Y);éj|mp—zmc—J)
1=1,7=1
—0. (24)

Definition 3.3 (Capacity Region): The capacity region of
the IC-DMS is the closure of the set of achievable rate vectors
(Ry, Re).

3) The Capacity Region of the IC-DMS Under a Low-Inter-
ference Gain: The following theorem characterizes a part of the
capacity region of the (1, a, b, 1)-IC-DMS with a < 1 and arbi-
trary b € R. As mentioned earlier, our result here is subsumed
by the result independently and concurrently obtained in [24,
Th. 3.5].

Theorem 3.2: The segment of the boundary, corresponding
to dRC > —1, of the capacity region of the (1, a, b, 1)-IC-DMS
witha < 1 and b € R is given by

) (25)

(26)

\/7—|—aaP

1+ a%(1 —a)P.

1
Ry(o) = B} log (

Re(o) = 5 log(1 + (1~ ) P)

dR.(e)

where a € [0, 1] satisfies the condition 57 oy = L

Proof of Achievability: The random coding scheme
described in the forward part of the proof of Theorem 3.1

3949

(Section III-A) achieves the rates (25) and (26) stated in the the-
orem. We emphasize that, in this scheme, the primary receiver
employs a single-user decoder.

Proof of Converse: See Appendix A.

The result of [24, Th. 3.5] further proves that the segment of
the boundary of the capacity region complementary to the one
stated above, i.e., the segment satisfying g}}%: < —1, is also
given by (25) and (26). Thus, the entire capacity region of the
low-interference IC-DMS is obtained.8

4) The Capacity of the Cognitive Radio Channel Under a
Low-Interference Gain: The proof of Theorem 3.2 reveals that
the jointly designed code that achieves all the points on the
boundary of the capacity region of the IC-DMS is such that the
primary receiver uses a standard single-user decoder, just as it
would in the absence of the cognitive radio. In other words, the
primary decoder d, does not depend on e and dg. Thus, in
order to find the largest rate that is achievable by the cognitive
user in the sense of Definition 2.3 we can without loss of gen-
erality restrict our search to the boundary of the capacity region
of the underlying IC-DMS. Hence, to find this capacity of the
cognitive radio channel, we must solve for the positive root of
the quadratic equation (18) in «. The solution is given by a* in
(14), hence the capacity is

Rt = %log(l +(1=a")P). 27

Thus, we have established the proof of Theorem 3.1.

IV. THE HIGH-INTERFERENCE-GAIN REGIME

The technique used to prove the converse of Theorem
3.2 also allows us to characterize the sum capacity of the
(1,a,b,1)-IC-DMS for any ¢ > 1 and b € R, and the entire
capacity region if a is sufficiently large and b is small enough.
These two ancillary results are presented in this section.

A. The Sum Capacity for a > 1

Corollary 4.1: The maximum of R, + R, over all (R,, R.)
in the capacity region of the (1, a, b, 1)-IC-DMS with a > 1 and
b € R is achieved with & = 1 in (25) and (26), i.e.,

Cum(a) = 3 08(1 + (/P + av/ o))

Proof: See Appendix B.

(28)

B. The Benefit of Joint Code Design

We emphasize that the scheme that is optimal in the low-inter-
ference gain regime has the property that the primary receiver
employs a single-user decoder. Contrary to this, we now ob-
serve that, when a is large enough, the optimal (jointly designed)
IC-DMS code is such that the primary decoder d;; depends on
the cognitive encoder el . First, we demonstrate an achievable
scheme in the following lemma.

8The original version of our paper contained an upper bound for the mc <

—1 portion of the boundary as well, but was found to not be tight, in general
Thanks to H. El Gamal for pointing this out to us.
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Lemma4.1: Consider the (1, a, b, 1)-IC-DMS. For every a €
[0, 1], the rate pair (R, R,.) satisfying

Ry = Foyp(0) ' Slog(1 + (v/, + ay/aP)?)

2
A def 1. (1—-a)P.
R. = R.(a) = ilog (1+ 1—|—(b\/ITp—|—\/a—Pc)2> (30)

(29)

is achievable as long as

a > 4';([:23)&+\/K(a)+Pp(l+(b\/Fp+ VaP.)?)

€29

where K (o) <" 1+ b2P, + 2b,/aD, P..

Proof: The primary transmitter forms X by drawing its
coordinates i.i.d. according to A/(0, P,). Since the cognitive
radio knows m;, and e, it forms X7, then generates X" by su-
perposition coding

aP,
P,

p

Xr=X"+

Xy

where Xg is formed by drawing its coordinates i.i.d. ac-
cording to N(0,+/(1 — a)P.) for some o € [0,1]. The
decoder d,, at the primary receiver first decodes m, treating
(1 + ay/aP./P,)X, as independent Gaussian noise. It then
reconstructs aX. o (which it can do because it knows eZ) and
subtracts off its contribution from Y before decoding m,,. The
decoding rule d* at the secondary receiver is simply to decode
m,. treating (b++/aP./P,) X}’ as independent Gaussian noise.
The rates achievable with this scheme are then exactly given
by (29) and (30), provided that the rate at which the primary
receiver can decode the cognitive user’s message is not the
limiting factor, i.e.,

(1-a)P. a’*(1 - a)P.
14 (b\/P, +VaP.)? = 14+ (VP + a\/och)2
Solving this quadratic inequality for a, we find that the condition

is satisfied only when a satisfies inequality (31) stated in the
theorem. O

In the achievable scheme described in Lemma 4.1, the pri-
mary receiver decodes the message of the cognitive user be-
fore decoding the message of the primary user. This scheme, in
fact, is optimal for the (1, a, b, 1)-IC-DMS when a is sufficiently
large and b is small enough. This statement is made precise in
the following theorem.

Theorem 4.2: A point (R, R.) is on the boundary of the
capacity region of the (1, a,b, 1)-IC-DMS if there exists « €
[0, 1] such that:

1) (R, R.) = (R,(a), R.(e)) where R,(c) and R.(a) are

defined in (29) and (30), respectively;

2) a and b satisfy the condition given in (31);
def  d”R.(x)

3) b < bumax(fta,a) where p, o

|#= and
bimax (1, @) is defined in Appendix C.
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Proof of Achievability: Tt is given in Lemma 4.1.
Proof of Converse: 1t is given in Appendix C.

As a gets larger and b gets smaller, Theorem 4.2 captures
a larger portion of the boundary of the capacity region, until
it finally characterizes the entire capacity region when a >

VI LK)+ K (1) + Py(1+ (0P + VP2)?) and b <

bmax(.u’h a)'

V. SYSTEM-LEVEL CONSIDERATIONS

In this section, we use our results on the capacity-achieving
cognitive communication scheme to derive insight into a prac-
tical implementation of cognitive radios.

A. Properties of the Optimal Scheme

1) Avoiding the “Hidden-Terminal” Problem: The network
of Fig. 1 models the situation in which the geographic loca-
tion of By is not assigned in accordance with any centralized
cell-planning policy and it can be arbitrarily close to B,,. Con-
sequently, the secondary users that are in close proximity to BB,
could potentially cause significant interference for the primary
system if the secondary system is to operate over the same fre-
quency band.

One possible adaptive communication scheme that the cogni-
tive radio could employ in order to avoid interfering with the pri-
mary user in its vicinity would be to restrict its transmissions to
only the time-frequency slots which are not occupied by the sig-
nals of the detected primary radio. Indeed, this idea of “oppor-
tunistic” orthogonal communication was what led to the birth of
the notion of cognitive radio. However, one drawback of such
a protocol is that the cognitive radio would very likely cause
interference to other, more distant, primary users whose pres-
ence—i.e., time-frequency locations—it could not detect. The
degradation in overall performance of the primary system due
to this “hidden-terminal” problem could potentially be signifi-
cant,? especially in the context of orthogonal frequency-division
multiple access (OFDMA) [9], [10], where the primary users are
allocated orthogonal time-frequency slots and the signal-to-in-
terference-and-noise ratio (SINR) required for decoding is typ-
ically large.

Contrary to this, we find that the optimal strategy is for the
cognitive radio to simultaneously transmit in the same fre-
quency slot as that used by the primary user in its vicinity. An
immediate benefit of this scheme is that, if the transmissions of
different primary users are mutually orthogonal, the cognitive
radio can only (potentially) affect the performance achievable
by the primary radio whose codeword it has decoded. Further-
more, we know that a proper tuning of the parameter « can, in
fact, ensure that the primary user’s rate is unaffected.

2) Robustness to Noise Statistics: All our results have been
derived under the assumption that the noise affecting the re-
ceivers Zg and Z7 is i.i.d. Gaussian. In [2], it was shown that
using a Costa encoder/decoder pair that is designed for additive
i.i.d. Gaussian noise on a channel with arbitrary (additive) noise

9Classical request-to-send/clear-to-send (RTS/CTS) solutions to this problem
are not viable since they require that the primary system ask for access to the
very spectrum that it owns.
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statistics will cause no loss in the achievable rates.!0 Combined
with the similar classical result for the standard AWGN channel
[12], we see that the maximal rate expressed in Theorem 3.1 is
achievable for all noise distributions.

B. Obtaining the Side Information

In practice, the cognitive radio is limited to obtaining the pri-
mary radio’s codeword in a causal fashion—its acquisition thus
introducing delays in the cognitive radio transmissions.!! In a
typical situation, due to its relative proximity to the primary user,
the cognitive radio can receive the primary transmissions with a
greater received SNR than that experienced by the primary re-
ceiver. Hence, it seems plausible that the cognitive radio could
decode!? the message of the primary user in fewer channel uses
than are required by the primary receiver. Recent work in dis-
tributed space—time code design [15] indicates that this over-
head decoding delay is negligible if the cognitive radio has as
little as a 10-dB advantage in the received SNR over the primary
receiver.

In a practical implementation of a secondary system, the
cognitive radio could be designed to efficiently exploit the
automatic repeat request (ARQ) mechanism employed by the
primary system. Most wireless systems today utilize ARQ
protocols to increase the uplink packet decoding reliability: the
retransmissions are either identical repeats of the erroneously
decoded data frame (standard ARQ) or a subset of the parity bits
of a punctured systematic error-correcting code (incremental
redundancy hybrid-ARQ). In the presence of an ARQ protocol,
the first transmission of the primary radio is usually underpow-
ered (to minimize the energy consumption) and the primary
base station is likely to send back a not-acknowledged signal
(NAK). However, due to its proximity to the primary radio, the
cognitive radio is very likely to have successfully decoded the
data bits and could then communicate to its receiver during the
next ARQ round(s) using the optimal code without the need to
again listen and decode the primary transmission.

The key assumption here is that the cognitive radio is able to
decode the ACK/NAK signals from the primary base station.
Also, the cognitive radio must know the ARQ scheme being
used (the particular code, puncturing pattern, and power incre-
ments in the case of IR Hybrid-ARQ). This information is typi-
cally periodically broadcast in the downlink of cellular systems
for the benefit of new-coming primary users and a cognitive
radio that is synchronized to the primary system could also ex-
tract this information.

C. Extension to Complex Baseband

The results of this paper can easily be extended to the case in
which the channel gains are complex quantities, i.e., p, f, g,c €
C in the case of the original (p, f, g, ¢) cognitive radio channel
with power constraints (P, P.) and noise variances (N,, N),

10Note that this is an achievability result: the capacity of the channel with this
arbitrary noise could be larger but a different code would be required to achieve
it.

HUnder a half-duplex constraint, the cognitive radio must first “listen” in
order to decode the primary message before it can use this side information for
its own transmission.

12The cognitive radio is assumed to know the encoder of the primary user.
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as defined in Section II-A. However, the optimal cognitive en-
coder rule (15) must change slightly: the superposition scheme
takes the form

N * P
X' = X" 4 el fatXn
/] \/ P F

where p = |p|e?®. The codeword X7 is again generated by
Costa precoding, but the assumed interference at the secondary

receiver is now
* o P,
9 4+ L it gt X7
c |f | P, P

and the assumed noise is CA(0, N,/|c|?). The factor ¢/% in
(32) essentially implements transmit beamforming to the pri-
mary receiver, hence ensuring that all the rates given by

(Iply/P, + 1 fIVaP)’
0§Rp§bg@*’N¢+mal—MR: 69

2(1 —
OSRC§10g<1+M>

(32)

(33)

N (3%)

are achieved in the underlying IC-DMS. As before, we can then
choose a@ = «* [determined by (14)], so that R* = log(1 +
lc|?(1 — a*)P./N,) is achievable in the spirit of Definition 2.3
but with R = log(1 + |p|*P,/N,).

D. Communicating Without Channel-State Feedback
From the Primary Base Station

In order to perform the complex baseband superposition
coding scheme (32) and, implicitly, the Costa precoding for
known interference (33), the cognitive radio must know each of
the four parameters g, ¢, f, and p, both in magnitude and phase.

To obtain estimates for both the magnitude and phase of p and
f, the cognitive radio would require additional help from the
primary system in the form of channel—state feedback from the
primary base station. In Section V-E, we present a method for
accomplishing this, based on the assumption that the cognitive
radio can extract the channel—state feedback intended for the pri-
mary radio. In this section, however, we present an alternative
scheme which requires no feedback from the primary base sta-
tion and which achieves the low-SNR capacity of a “fast-fading”
cognitive radio channel under the assumption that the cognitive
radio has no knowledge of p and f.

1) The Capacity in the Absence of Channel State Informa-
tion: Suppose that, after having decoded X}, the cognitive
radio transmits the following n-symbol codeword:

(36)

where the codeword X - is generated by Costa precoding for the
interference

(37
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assuming the presence of CA/(0, Ny/|c|?) noise at the sec-
ondary base station. Note that this scheme does not require
knowledge of the channel between the cognitive radio and the
primary receiver, parameter f, or the channel between the pri-
mary radio and primary receiver, parameter p.13 The cognitive
radio does, however, require knowledge of the channel to its
receiver, parameter ¢, and the channel between the primary
radio and the secondary receiver, parameter g.

* Obtaining c: The parameter ¢ could be estimated at the
secondary base station by using the cognitive radio’s pilot
signal or in a decision-directed fashion. The estimate could
then be fed back to the cognitive radio.

* Obtaining g: If the secondary base station synchronizes to
the primary radio’s pilot signal, it could estimate g during
the time the cognitive radio is in its silent “listening” phase
and then feed this estimate back to the cognitive radio. Al-
ternatively, if the cognitive radio reveals to the secondary
base station the code used by the primary radio, the sec-
ondary base station could use the silent “listening” phase
to decode a few symbols transmitted by the primary radio
thereby estimating the parameter g.

This cognitive communication scheme is, in fact, optimal for
the IC-DMS channel in which p and f are not known at the cog-
nitive (and primary) radio, but are known at the primary receiver
and are fixed for the duration of communication. In this case, it
is straightforward to see that the boundary of the capacity region
of this IC-DMS, parametrized by « € [0, 1], is given by

/P, VaP.|?
Rp :log 1+ |p p—i;f « |
Ny + [fP(1=a)Pe
_ e’ (1 — )P,
R. =log (1 + . .

Observe that since p, f € C, the quantity |p\/ﬁp + fVaP.|?
could be arbitrarily small implying that the only way that the
cognitive radio can ensure that it does not interfere with the
primary radio is to completely shut off. In other words, the
capacity, in the sense of Definition 2.4, of the cognitive radio
channel is zero when p and f are not known at the cognitive
radio and are fixed for the duration of communication.

However, such an extreme slow fading scenario is unlikely
in practice: a more reasonable assumption might be that p and
f are time varying (and still tracked at the primary receiver).
Under the assumption of ideal interleaving, we can model these
channel states {p[m]} and { f[m]} as ergodic random processes.
In this case, the boundary of the capacity region of this “fast-
fading” IC-DMS is given by

B , lp\/Pp + fVaPe|?
R,=E llog (1 + N, +|f]2(1 — Ol)Pc>

ICIQ(lA;S a)Pc>

R, =log <1 + (38)

3Note that the parameter « in (36) could potentially depend on p or f. As it
will turn out, its “optimal” value depends only on the magnitude of p, as will be
shown in (42).
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where the expectation is taken with respect to the stationary dis-
tribution of the ergodic processes. If we further assume that p
and f are independent and their magnitude are deterministic,
we can obtain the following low-SNR order approximation!4
for (38):

lpl> P+ f* P lpl*P, |fI°Pe
R,=0© T Tel Ly,
P <N1,~|—|f|2(1—a)PC WX N TN [T

p p

(39)

On the other hand, the capacity R; of the point-to-point

channel from the primary radio to its receiver, in the absence
of the cognitive radio, satisfies

 def [
Rp = IOg <1 + Tp

2P, 2P
:®<|pz|vpp>7 as |p]|Vp_)0

p

(40)

Hence, in order to avoid causing interference to the primary
user at low SNR, the following equation must be satisfied:

|p|2Pp + |f|2aPc _ |p|2Pp

41
N+ [P - aF N, “
If the cognitive radio tunes its parameter « such that
aet _|p* Py /Ny
A=Qp = ————— (42)
L+ |p|*P /Ny
this condition will be satisfied, hence R, = @(%i). The
capacity of this “fast-fading” channel is then given by
e (1 = o) P
R.o=log|l14+ ——u——
og< + N,
PPy |2 Pe
—_ 0. (43
as max{ N, , N, — 43)

In order to compute «, given in (42), the cognitive radio only
needs to know the received SNR of the primary transmission at
the primary base station: |p|> P, /N,,. If the primary system uses
a good (capacity-achieving) AWGN channel code and the cog-
nitive radio knows this, the cognitive radio can easily compute
an estimate of this received SNR since it knows the rate at which
the primary user is communicating, I?,,: this estimate is simply
given by efi» — 1. Hence, the assumption that the cognitive radio
has knowledge of the received SNR of the primary transmission
is implied by the assumption that the cognitive radio knows the
(capacity achieving) codebook of the primary radio.

2) Achieving the Fast-Fading Capacity at Low SNR:
The optimal cognitive communication scheme—both in the
full-channel-state-information scenario, given by (32), and in
the “fast-fading” scenario, given by (36)—requires that the
cognitive radio’s signal is perfectly time-synchronized with
the primary radio’s signal when it arrives at the primary base
station, i.e.,

Vol = pX,lo] + fX, ] + 1\ a2 K.l + 7,

14We say that f(z) = O(g(x)) as & — 0 if there exist constants K, K> >

0 such that litn, _¢ g_((_)z < K, and limn, .o Jql(% > K.
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In practice, however, the delays from the two radios to the pri-
mary base station could be different,!5 resulting in a received
signal given by

P.
Y, [m] = pX,[m—1)+ f(|a—=Xp[m—1.]4+ Ziota[m] (44)

b,
where Ziotal[m] = fXC [m—1.]+ Z,[m] is the aggregate noise.
Hence, to achieve perfect synchronization, the cognitive radio
would have to advance its signal by /. — [,,. Given that the per-
formance of the primary system is at stake, the estimates for /..
and [, would need to be as accurate as possible.

However, one can circumvent the sensitive and risky task
of time-synchronization by exploiting the built-in multipath re-
silience of the primary receiver. Observe that (44) essentially
describes a time-invariant two-tap multipath (or ISI) channel for
the primary transmission. The primary system is naturally de-
signed to tolerate a certain amount of delay spread!6 in the wire-
less channel. Transmit-receive architectures such as OFDM,
or receivers such as the RAKE, in the case of direct-sequence
spread spectrum, are two very common methods used to combat
multipath fading in a wireless channel. Both of these schemes
would yield!” a power gain of [p|*P, + |f|*aP. at the pri-
mary base station (see, for instance, [21, Ch. 3], and references
therein), thus achieving the rate (39) for the primary radio, at
low SNR.

The received signal at the secondary base station, on the other
hand, is given by

. N P, N N
Y,[m] = cX.m—1]+|c aF'Xp[m—lc]—l—gXp[m—lp]

p

+ Zs[m]. (45)

Hence, to achieve the “fast-fading” capacity promised in (43),
X & must be formed by Costa precoding for the interference
term in parenthesis in (45). In order to do this, the cognitive
radio must know the delays of the two radios with respect to the
secondary base station: [. and /.. In a stationary environment,
these values can be accurately tracked by the secondary base
station and fed back to the cognitive radio. Hence, the capacity
of the fast-fading cognitive radio channel R, = log(1+ |c|?(1—
a,)P./Ny) is achieved.

3) Discreetly Entering the Primary Spectrum: Though the
expression for a, in (42) does not depend on |f|, we can see
that (41) can approximately be satisfied even with & = 0 when
|f|? is very small. In other words, when |f] is small, log(1 +
|c|?(1 — a.) P./N,) may be a very conservative estimate for the
maximum achievable rate for the cognitive radio.

Since the cognitive radio has no information about | f|, a nat-
ural way for the cognitive radio to enter the spectrum of the
primary system would be by first setting « = 0 (transmitting

I5Even though the two radios are relatively close, their signal paths could
easily fall into different taps in a very high bandwidth system.

16In other words, the channel from the primary radio to its receiver is fre-
quency selective with multiple taps. For simplicity of notation, we are only dis-
playing the tap corresponding to the most dominant path.

17The total delay spread between the primary and cognitive radio transmission

must be less than the maximum tolerable delay spread in the primary system:
(Ie = 1,)/W < Ty =~ 10us.

3953

purely its own information) and slowly ramping up its transmit
power, from 0 to the maximum P,, while listening for a NAK
signal from the primary base station. If a NAK is detected, the
cognitive radio should then slightly decrease its transmit power
and continue monitoring the ARQ channel to ensure that its new
transmit power level is acceptable.!8 This new power level, call
it P(k), should then be compared with the quantity (1 — v, ) P.:
if P(k) is larger, it is kept as the new transmit power of the cog-
nitive radio (with @ = 0). However, if (1 — a,)P. > P(k),
the cognitive radio could achieve a higher rate by using its max-
imum transmit power while still ensuring that the primary rate
is unaffected, i.e., it should ramp up its power from P(k) to P.
while increasing o from 0 to a.

E. Obtaining the Channel-State Information

In order to implement the optimal communication scheme of
Costa coding and beamforming (32), the cognitive radio must
obtain estimates of p and f from the primary base station. If
the primary radio is, by default, able to obtain estimates of its
channel to the primary base station (both magnitude and phase)
via feedback from the primary base station, the cognitive radio
could also potentially decode and use this information.!® Under
this assumption, we present the following simple algorithm that
the cognitive radio can use to acquire the estimates of p and f.

1) At first, the cognitive user is silent and the primary base
station broadcasts the current estimate of p, call it p, along
with the primary user’s ID, on the uplink control channel
to which the cognitive radio is tuned. The primary base
station is assumed to be able to track p by either using
a pilot signal or in a decision-directed fashion. Thus, the
cognitive radio can obtain p.

2) Upon entering the system and decoding the message of the
primary user in its vicinity, the cognitive radio simply per-
forms amplify-and-forward relaying of the primary code-
word

(46)

where o € [0,1].
3) The primary base station receives

(47)

and computes an estimate h of the overall channel gain
(p+ fy/a®e) as it decodes m,,.
r

4) The quantized version of h is then broadcast on the control
channel, in the usual way, along with the given primary
user’s ID.

5) The cognitive radio picks up this information from the con-
trol channel and then computes h— P.

6) The quantity h — p is an estimate for f+/aP./P, which is
then multiplied by \/aP,/P., to obtain an estimate for f.

18The NAK signal may be caused by interference from sources other than
the cognitive radio. If no more NAKSs are transmitted after the cognitive radio
reduces its power, and if the power of the primary radio returns to its nominal
value, the cognitive radio can be sure that it indeed was the culprit.

19The cognitive radio would have to be able to decode the dedicated control
channel bits of the particular primary user in question.
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Observe that a large o would cause a greater probability
of a deep fade for the primary user since the quantity
lp + fy/aP./P,]|, in step 3) above, would be more likely
to be much smaller than |p|. In this case, the primary system
would momentarily not be able to support the requested rate
of log(1 + |p|?P,/N,) and a NAK would be generated by the
primary base station. The conservative solution is for the cog-
nitive radio to use a small value of a and soft-combine several
consecutive estimates of f, while simultaneously listening for
the primary base-station NAK signals. As soon as the first NAK
is detected, the o parameter should either be reduced or set to
0. In the case of a time-varying channel, the sequence of steps
1)-6) would need to be performed periodically.

Finally, note that the capacity of the cognitive radio channel
R? in Theorem 3.1 can only be achieved under the assumption
of perfect channel-state estimation and feedback. In practice,
the estimation and quantization errors will reduce the achievable
rate and their effect can be modeled as additional independent
Gaussian noise.

APPENDIX A
PROOF OF THE CONVERSE PART OF THEOREM 3.2

First, we observe that the rate region specified in Theorem
3.2 is a convex set in Proposition D.1. We will use the following
standard result from convex analysis (see, for instance, [17]) in
the proof of the converse.

Proposition A.1: A point R* = (R, RY) is on the boundary
of the a capacity region if and only if there exists a u > 0 such

that the linear functional ;. [?, + R achieves its maximum, over
all (R,, R.) in the region, at R*.

A. The i < 1 Case

For convenience, we will consider a channel whose output at
the primary receiver is normalized by a, i.e., a channel whose
input—output single-letter equations are given by

V= o Xp XD+ -2 (48)
Y =X+ XD+ 27 (49)

Note that the capacity region of this channel is the same as that
of the original channel (4) and (5) since normalization is an in-
vertible transformation.

Suppose that a rate pair (R,, R.) is achievable, in the sense
of Definition 3.2, for the (1,a,b,1)-IC-DMS. Assuming that
the messages (m,,m.) are chosen uniformly and indepen-
dently, we have, by Fano’s inequality, H (m1,|YP") < neyn
and H(m.|Y]") < nesn, where €,,, — 0 and €5, — 0 as
156(:;) — 0 and Pe(gi) — 0, respectively. We start with the
following bound on n.R:

(mp;Y,') + nepn
(Y”) —h (Yp"‘|mp) + nepn

(50)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 9, SEPTEMBER 2009

where (a) follows since m,, and m,. are uniformly distributed
on{1,2,...,2"%} and {1,2,...,2"F»}, respectively, and (b)
follows from Fano’s inequality. Also, we have that

nR. = H(m.)
= H(m.) + H (mc|Y,",mp) — H (m|Y;*, my)
=1 (me; Y[ |myp) + H (me|Y[",my)

()

<I (mC7YSn|mp) + Neésn

= B (V2 mg) — b (V2 g, ) + i

®)

< h(Y]|mp) —h (st|mp,mc,X;’,X:‘) + nes

E (Y2 my) — h(Z7) + newn (51)
where (a) follows from Fano’s inequality and the fact that con-
ditioning does not increase entropy, (b) follows from the fact
that conditioning does not increase entropy, and (c¢) follows
from the fact that Z? is independent of (m,,, m.) and hence
also of (X', X7).

Let Z™ be a zero mean Gaussian random vector, independent
of (X, X, 27, Z!") and with covariance matrix (5 — 1)L,.
Then, we can write

B (Y my) b (Y my, X;)
Y (f/p" - lX;ﬂmp,X;})

(52)

where (a) and (d) hold since X' is the output of a determin-
istic function20 of m,,, (b) holds because translation does not
affect entropy, (c) follows from the fact that Gaussian distribu-
tions are infinitely divisible and from the definition of 7 " and
(e) follows from the definition ¥ ef X2 4+ Z™. By similar
reasoning, we can write

h (Y my) = h(Y " my). (53)

Combining the bounds in (50) and (51), we get

ity + ) < (B (1) — 1 (¥ m,)
+h (Y my,) — h(Z}) + pnepn + nes p

(é) wh (an) +h (st|mp) — ph (an|mp)

— g log(2me) + pney n + nes

20[n general, the encoder E;} could be stochastic, i.e., depend on a random
variable generated at the primary radio. In this case, inequalities (50) and (51)
would need to include conditioning on E}' in addition to m,, [note that this can
be done for free in (51) while it would yield a further upper bound in (50)].
Since the steps in the proof would be the same, we assume that the encoders are
deterministic to simplify the notation.
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(®)

= ph (Y,") + h(Y"|mp) = ph(Y™ + Z"|my)

n
-3 log(2me) + pne, » + nes n

(¢) -
< Wh(Y)) + h(V"|m,)
_ kn ZR(Y"|mp) 2h(Z™)
5 log (e +e )

— g log(2me) + pne, n, + nes p (54)
where (a) follows from the fact that Z” ~ A(0,1,,), (b) follows
from equalities (52) and (53), and (c) follows from the condi-
tional version of the entropy power inequality (see [22, Prop.
L.1]). '

Let X {_1 denote the first j — 1 components of the vector
X™ with the understanding that X{ is defined to be some con-
stant and let X ; denote the jth component. We can upper bound
h(Y™|m,,) as follows:

h(Y™m,) = h (f/"|mp7xn)

() 7—1 7j—1 n
Zh (Vilma, V77 X, 5 X371 X011 )

© e 1 . E[Y; X, ]?
< - 2| _ ik 2
< E > log (27re (IE [YJ ] £ 3,]-

1
@ ; 5 log(2me((1 = a;)Po; +1)) (55)
(2 - 10g(27re((1 —a)P.+1)) (56)

where (a) follows from the chain rule and (b) follows from the
fact that conditioning does not increase entropy, and (c) fol-
lows from [20, Lemma 1] (a more direct proof appears in [19,
Lemma 1]). Equality (d) follows from the following argument.
Since jointly Gaussian X, j, Y, ; achieve equality in (c) (by
[20, Lemma 1]), we can without loss of generality let

. P, ;
Xej=Xej+[ei 5" Xy, (57)
Pyj
where )A(C’j ~ N(0, (1 — a;)P. ;) is independent of X, ; and
2n fe
C7j : 2nR Z X
onfp

def
P] - 2nR Z

The parameter «; € [0, 1] is chosen so that the resulting covari-
ance Kx, . x, Y., is the same as that induced by the code.
Inequality labeled with (e) follows from Jensen’s inequality, by

choosing « € [0, 1] such that

n
1
=-> a;P.;
n <
Jj=1

(58)

(59)
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and from the fact that the power constraint || X”||*> < nP. im-
plies that % Z;L=1 P.; = P..
Similarly, we can upper bound h(Y},) as follows:

v & ih (Yp,HYP{Il)
j=1

) &
< Zh(YPJ)
j—l

< Z log 27re[E Y2 ])

(d) 21e
= 2510g<?(1’p,j+2am +a’P, C’J’J’D)
7j=1

(e)

< §log<2ﬂ-e (/P,+ay/aP)?+a*(1—a)P, +1)>

(60)

where (a) follows from the chain rule and (b) follows from the
fact that conditioning does not increase entropy, (¢) holds since
the Gaussian distribution maximizes the differential entropy for
a fixed variance, (d) follows from the same argument as in (55),
and (e) comes from Jensen’s inequality applied to the log( -)
and the /- functions.

e

Let f(z) - & 10%(6” +enh(Z" )) over z € R. Then,
we can express the bound on our linear functional in (54) as

n(uRy + Re)
< ph (V) + f(h(Y ™ my))

— glog(%re) + pnepn + N p- (61)

Observe thatas long as u < 1, f(x) is increasing. Hence, we can
obtain a further upper bound by substituting inequalities (56)
and (60) into (61)
n(uRy + Re)
2
< uglog <g((\/Pp+a\/ aPc)2+a2(1—a)Pc+1)> (62)
n
+f (5 log(2me((1 - a)P. + 1))

- g log(2me) + pney n + nes (63)

a 2
@ ug log (aif((\/Pp—l—a\/aPc)z—l—aQ(l—a)Pc—|—1)>
(64)
n glog(Zﬂ'e((l )P+ 1))
n 1
—hy log | 2me | (1 —a)P. + e (65)
— g log(2me) + pne, n + neg p (66)
where (a) follows from the fact that
_kn z 2h(z")
flz)=x 5 log (e +e ) (67)
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:x—&log en® 4+ 21e i—1 (68)
2 a?

which holds since Z™ is zero mean Gaussian with covariance
(% - DI

Grouping together the p-terms, dividing by n, and letting
n — oo, we get that

VP, + av/aP.)?
uRp+RC§%10g(1+( r - ava )>

14+ a%(1 — a)P.

+ 3 log(1+ (1 - @)P.). (69)

Let c, denote the maximizing o € [0, 1] for a given ¢z < 1 in
the above expression. Then, we can write

/P o, P.)?
MRp+Rc§%10g<1+( p T a/ay ))

1+ a?(1 — ap)P.

+ 5 loa(1+ (1 - )P, (70)

Hence, we have established the converse of the theorem for
p<1.

B. The n > 1 Case

An outer bound to the boundary of the capacity region for the
1 > 1 case can be found in [11]. The original version of our
paper contained this bound as a converse, but the bound was
found to be not tight in general.

APPENDIX B
PROOF OF COROLLARY 4.1

The proof of this Corollary follows from Theorem 3.2 and
Lemma D.1. In particular, we observe that the converse to The-
orem 3.2 for 4 > 1 (see part B of Appendix A) holds for any
a > 0 and b € R. However, from Lemma D.1 we see that the
choice a = 1 in (25) and (26) is optimal for any a > 1, as long
as i > 1. Hence, the corollary is proved. .

Remark: This result implies that, for any ¢ > 1, b € R,
and p > 1, the linear functional p R, + . is maximized at
(Rp, R.) = (Csum(a),0). Hence, for a > 1, the entire capacity
region is parametrized by 1 < 1, for any b € R.

APPENDIX C
PROOF OF THE CONVERSE PART OF THEOREM 4.2

Let “genie B” disclose m,. to the primary transmitter, thus
getting a 2 X 1 multiple-input-multiple-output (MIMO) broad-
cast channel (BC) channel with per-antenna power constraints.
The input—output relationship for this channel can be written as

Y,=hlX+Z,

(71)
(72)
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where h, = [1a]” and h, = [b1]7. We choose 11 < 1 in the
linear functional u R, + R, and recall that the optimal transmis-
sion vector X is Gaussian and given by

X = Xp1up1 + Xpoupe + Xoiuer + Xeouep (73)
where u,1,u,2 € R% and u.1,u.o € R? are the so-called sig-
nature vectors and symbols X1, X}» and X, X are i.i.d.
N(0,1).

In order to emulate the per-user individual power con-
straints of the IC-DMS, we impose the per-antenna constraints
(E[XXT])11 < P, and (E[XXT])32 < P. on the achievable
strategies in MIMO BC channel. We let

def T

¥, = u,iu,; + llpgll;];? (74)
e def ucluch + ucgucTQ (75)

so that, by the independence of X1, X;2, X¢1 and X.o, the
constraint can be expressed as (3, + X.)11 < P, and (2, +
2c)22 S Pc-

From [22], we know that the optimal encoding strategy is to
generate X, by Costa precoding?! for hg(Xdud + Xeouea).
The rates achievable with such a scheme are

Ry = Fy(Z},37)
def 1 "
= 51og (14+h.%*h,) (76)
R.=R.(35,%7)
et 1) (4 N hT>*h, an
2T Trnlsn,
where X7 and X7 are the solutions of
ar ax pRy(E,, X)) + Re(E,,2.)  (78)

g m
(Bp,Tc)€S(Pp,Pr)
where < 1and S(P,,P.) € {2, = 0., = 0 : (I, +
Y)u < P, (B, + ) < P.}.
Since the per-antenna power constraints must be met with
equality,?2 we can, without loss of generality, write

_ 8Pk
Zp = I kpp a;’J
where
ky € [=\/aBP,P., \/aBP,P,] (79)
5 _ [A1=8)P ke
T ke (1-a)P.
where
ke € [-1/aBP,Pe. /apiP, P (80)

and B € [0,1]anda € [0,1]anda = 1 — wand 3 L' 1 - 3.

2lCosta’s scheme is a block-coding scheme and, strictly speaking, encoding
is performed on the vector (X7, X7 ) given X and X}.

cl?
22[f, instead, antenna 1 uses only P, — 1 power, we can add another antenna
with power i whose signal the receivers can first decode and then subtract off
thus boosting at least one of the rates. The same applies to antenna 2.
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Substituting the covariance matrices (79) and (80) into (76)
and (77), we get

ép(zpa 2(‘) = fzp(ﬂ? Ol, kp7 a? b)

of 1
def 3 log(1 + 8P, + 2ak, + aa®P.)

Rc(zm Ec) = Rc(ﬁ7 Q, kp; a, b)
b2(1 — B)Py + 2k:b+ (1 — a)P. 82)
1+ b2BP, + 2k,b+ aP. ’

81)

def 1
= -1 1
20g< +

The expression in (82) is maximized by choosing k. =
V(1 =pB)(1 — @)P,P,, ie., making . unit rank. If b = 0, it
is clear that # = 1 and k, = /&P, P. maximizes the linear
functional uf%p(ﬂ, a,ky,a,b) + f%c(ﬂ, a, ky,a,b). In general,
we would like to find the set of all values of b for which § = 1
and k, = \/aP, P, are optimal. For such values of b, we then
have

. 1 (1-a)P.
Re(S,, %) =  log <1+ o/t \/Q_IDC)2> (84)

which exactly match the achievable rates given in Lemma 4.1.
To this end, let B(u, a) denote the set of all b > 0 such that the
function

omax plty (B, ky, a,6) + Re(B, by, a,b) - (85)
is maximized, over all § € [0,1] and k, €
[-V/BaP,P.,\/BaP,P,], by choosing # = 1 and

kp = \JaP,P.. We let byax (1, a) def MaXpe B(u,q) tO Obtain
the statement of the theorem. Appealing to the remark in the
proof of Corollary 4.1 (see Appendix B), we observe that the
boundary of the capacity region in this very-high-interfer-
ence-gain regime is completely parametrized by 1 < 1. Hence,
we have proved the theorem.

APPENDIX D
SUPPORTING RESULTS

Proposition D.1: The rate region specified in Theorem 3.2 is
a convex set.
Proof: ApointR = (R, R.) is in the rate region specified
in Theorem 3.2 if and only if there exists « € [0, 1] such that

1
Re < Slog(l+ (1= a)P.) (86)
1
Ry + Re < S log(1 + a?P. + P, + 2a\/aP,P.)
1 1+ (1—a)P,
Slog [ g 7
+3 Og<1+a2(1—a)Pc) (87)
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Suppose that there exist two points R() = (RI()l), Rgl)) and
R® = (Rg), R&z)) that are on the boundary of this region. Let
oM € [0,1] and a® € [0, 1] be their corresponding param-
eters in (86) and (87) for which the inequalities become tight.
Then, for any A € [0, 1], we have that

ARM 4+ (1= A)RP)
< %log (1 + (1 — a(1)> PC)

41 3 A Jog (1+ (1 - a<2>) PC)

1
< 3 log(1+ (1 — a™)P.)

(88)

(89)

where a* %' Ao +(1—X)a® and the last inequality follows

from Jensen’s inequality. Similarly

1 1 2 2
A (RS + RO) + (1 - 2) (RS + R)
A
< [5 log (1 +a’P. + P, + 2a\ /a(l)Pch>
DY
+——log (1 +a°P. + P, + 2a,/a(2>PpPC>}

1+ (1—aMP,
+ élog + )P
2 1+a2(l—aW)P,
14+ (1—a®)P.

+1 - A |
2 8 1+a?2(1—a@)P. )|’

We can further upper bound (90) as follows:

(90)

A (R,(}) + Rﬁ”) +(1-2) (R](f) + R£?>>

()1
< Stog(1+a2 Pt P20/ By Pe (Mo + (1- 0V a®@))
1 1+ (1= Xxa® — (1= Na®)P,
+ - log
2 14+ a2(1 - Xa® — (1 - X)a®@)P,
®) 1

< 5log (14 a*P. + P, + 20y/P, Poa”)

1 1+ (1—a*)P.
=)
Toos (1 +a2(1— a*)PC)

where (a) follows from Jensen’s inequality applied to the
concave function log(ky + koz) (for constant ki,ke > 0)
and the concave function log(%) (for constant k£ < 1).
Inequality (b) follows from Jensen’s inequality applied to the
square root function. This shows that AR() 4 (1 — M)R(?) is

in the region as well, hence the region is a convex set. O

Lemma D.1:

max o log (1+ (\/E—f—a\/a—F’C)Q) —i—%log{l—i—(l—a)Pc)

0<a<l 2 1+a?(1—a)P.
= Llog(1+ (VB +aV/F)?)

fora > 1and p > 1.

O
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/1’ (\/Pp+avapc)2 1
Slog |1 Zlog(1 + (1 —a)P,
e 1+a2(1—a)P. + 5 log(1+ (1 —a)P) (92)
1 2(1 — P. 2] P. 2\u(1 1—a)P.
— max llog (I14+a*(1—a)P.+ (/P + avaP))*(1+ (1 — a)P.) 03
0<a<1 2 (1 + a2(1 _ OL)PC)”
1 2 1— Pc P Pc 2\p
< max 110g (1+a?(1 = a)P. + (/P + av/aP.)?) o8
0<a<l 2 (1 + a2(1 _ a)PC)I_L—l
1+ a?P. + P, + 2a\/aP,P,)*
= max 1log (1+a*Pe + By + 2a/abyPe) ©5)
0<a<1 2 (14 a2(1 — a)P.)r-1
= Dlog(1+ (VP + av/P)?). 06)

Proof: On the one hand, we have (92)—(96) shown at the
top of the page. On the other hand, the maximization problem
in (91) can be lower bounded with & log(1+ (\/P, +a\/P.)?),
by choosing @ = 1. Hence, the lemma is proved. O
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